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Abstract-The problem of free and forced transverse vibration of an orthotropic, composite, and isotropic
thin square plates with uniformly distributed damping and simply supported boundary conditions has been
solved, using a modal expansion technique. A load of the type Po cos fit applied at the center of plate has
been considered and the phase angle between the forcing function and the vibration response at the center, as
a function of the forcing frequency and the damping parameter determined. This theoretical relationship
together with the experimentally measured phase angle between the applied mechanical forcing and the
resulting vibration response at various forcing frequencies was used to determine an equivalent viscous
damping parameter. This technique has been found to be particularly useful for the measurement and
comparison of the relative damping in composite or orthotropic materials. Also. a theoretical relation for the
energy loss due to viscous damping in vibrating plates has been developed and the theoretical energy loss at
various frequencies has been compared with the experimentally measured energy loss at the same
frequencies. Typical damping results are presented for aluminum. steel and aluminum/graphite-fiber
composite materials.

I. INTRODUCTION

Mechanical vibration deals with the oscillatory motion of a physical system and is determined by
the three parameters; the mass, the stiffness and the damping of the system. Material damping is
the dissipation of energy due to periodic variation of the applied stress level. Since the material
damping is an important design factor in controlling noise and mechanical vibration, considerable
work is being done in this field.

The three most common methods of measuring damping [1] are: (1) Log decrement method;
(2) Frequency band width method; (3) Phase angle method. Of the three methods mentioned
above, the first two methods are being widely used. The log decrement is usually determined
using the rate of decay of either a torsional pendulum or a cantilever beam. In the frequency
bandwidth method [2] the driving frequency is changed until the resonant condition is obtained.
Then the frequency above and below the resonant frequency, at which the amplitude of vibration
is one half that at resonance is determined. If Wn is the resonant frequency and ~W the change of
frequency from the half amplitude point below resonance to the half amplitude point above
resonance, then the log decrement is given as

7r'~W
fj=-­

W n ' y3 (1.1)

Both the methods mentioned above assume a single degree of freedom system.
The phase angle method used up to the present also implicitly assumes a single degree of

freedom system and considers the phase lag between the applied forcing and resulting system
displacement as a means of damping determination.

Smith and Berns [3] used this approach for an estimation of system damping. They considered
a simply supported beam and measured the phase angle between the applied force and the
vibration response, by exciting the beam at the center. They have considered the beam as a single
degree of freedom system and have reported that the method is suitable for high frequencies
(near resonant frequency). However, they have failed to consider the variation of phase angle
with the change in frequency and amplitude of vibration.
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Pisarenko et al. [4J considered a circular plate with dissipation as the only source of energy
loss and determined the resonance oscillations of a plate subjected to alternating harmonic
loading. Their numerical results show that the log decrement is a function of applied frequency
and amplitude, and decreases as the frequency is increased.

In the present work, an attempt has been made to obtain the critical damping ratio at small
amplitudes of vibration of plate structures as a function of forcing frequency. Since it is obvious
that a beam is a poor representation of a true orthotropic or composite structure due to the
special orientation of fibers with the axis of a beam, it was decided to use a plate for a more
realistic analysis of a composite structure. Also, a plate complies with the continuous system of a
structure and eliminates the assumptions made during the log-decrement analysis of a beam in
considering it as a single degree of freedom system.

2. THEORY

2.1 Formulation of the problem
For the set of coordinates considered (Fig. l) the equation of motion for a specially

orthotropic simply supported plate is given by[5J

at x =0, a
y =O,b

where

a2w aw a4w a4w a4w
phjjj2+ C8i+ Dx ax. +Dy ay. +H ax2ay2 = q(x, y, t)

a2w a2w
w = ax2 = ay2 = 0,

D = Exh
3

x 12jL

D = GXyh
3

xy 12

(2.1)

p, P being the mass density and Poisson ratio, C the damping coefficient per unit area, and q the
load per unit area acting perpendicular to the plate.
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Fig. l. Coordinate system used in analysis.
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2.2 Method of solution
The equation of motion for a freely vibrating plate is

The solution for the above equation can be written in the form

w(x, y, t) == <p(x, y)e-/lt cos wmnt,

(2.2)

(2.3)

where <p represents the amplitude, ~ the damping parameter and Wmn the damped circular
frequency.

For eqn (2.3) to satisfy (2.2) at all time the damping parameter should be

c
~ == 2ph .

Equation (2.2) now reduces to

where

Using Levy's solution[6]

with the boundary condition

the solution to eqn (2.5) is given by

(2.4)

(2.5)

(2.6)

(2.7)

,I, ( A . m7fX
'I'm x) == m sm--;

a
m-an integer (2.8)

where Am is an arbitrary constant. Now the natural frequency is obtained as

(2.9)

This equation is the same as the one obtained by Hearmon [7] using the Rayleigh method.
Since it is easier to measure experimentally the phase angle between the plate vibration

response and the applied forcing under steady state vibration of an externally excited plate, a
load of the type

q(X, y, t) == Po cos fit x ~(x - a/2) x ~(y - b/2) (2.10)

where fi the forcing frequency has been considered. (Also such a point load can be applied
practically at the center of the plate using an electro-magnetic shaker.)

To obtain the steady state solution of eqn (2.1), we assume a solution of the form

W(X, y, t) == L L <Pmn(X, y)fmn(t) (2.11)
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where l/Jm,. is given by eqn (2.6). Substituting eqn (2.11) in eqn (2.1) and using the orthogonal
property of eigen functions, eqn (2.1) reduces to

(2.12)

where

4 (a (0
Qm,.(t) = ab Jo Jo q(x, y, t)l/Jm,.(X, y) dx dy.

Using eqn (2.10), Qm" can be written as

Qm"(t) = a~ Pot/lm(af2) sin n; cos fit.

The homogeneous solution of eqn (2.12) is given by

(2.13)

where Am,. and B"", are constants.
To determine the steady state solution of eqn (2.12), it is written in the form

Letting

(2.14)

/m"2 = Dm" cos fit + Cm" sin fit

and substituting in the eqn (2.14), the constants Dm" and Cm" are obtained as

and

Hence the complete solution is

(2.15)

(2.16)

(2.17)

/m,.(t) = e-~t[Am" cos wm"t + Bm" sin wm"t] + [Dm" cos fit + Cm" sin fit]. (2.18)

The initial conditions

yield,

and

/m,.(O) = 0 and d/m,.(O) = 0
dt

1
Bm" = --[~Dm" +fiCm,.].

Wm"

(2.19)

(2.20)

(2.21)

The first part of the solution can be deleted as it tends to zero when time increases. From the
second part of the solution we see that, l/J, the phase angle between the applied force and the
response is

l/J = arc tan (2.22)
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2.3 Equation of energy loss in plates
Equation (2.11) gives the solution to the equation of motion of a vibrating plate, excited

centrally by a load of the type Po cos fit . c5(x - a12) . c5(y - hI2).
The energy loss per cycle due to viscous damping is given by

EL == iLL C~; dw dx dy. (2.23)

Taking first few terms of eqn (2.11) and using eqn (2.23), the energy loss per cycle can then
approximately be written for a square plate as

(2.24)

where CIl , C)). DB, D)). are obtained by using eqns (2.16) and (2.17).

2.4 Critical damping ratio
Critical damping is defined as the damping necessary for no vibratory motion. This means that

for critical damping the natural frequency of vibration is zero. For this case eqn (2.9) gives

I3criticat = WOrnn-

Using eqn (2.4), the critical damping coefficient is obtained as

Defining { the critical damping ratio as

{ == /3//3critica"

where /3Critical being evaluated at m == n == 1; eqn (2.27) can be written as

{== /3!WOIl'

(2.25)

(2.26)

(2.27)

(2.28)

3. EXPERIMENTAL PROCEDURE

A schematic diagram of the experimental setup is shown in Fig. 2. the test specimen (square
plate) was excited at its center using an electromagnetic shaker. The phase lag between the force
and the vibration response of the plate was obtained from the Lissajous diagram displayed on the

I- plate specimtlf1
2- accelerometer
3- piezotron couplers
4- oscilloscope
So polaroid camero
s- eklctromO\lnetic shaker
7- force ceft
e- power amplifier
~. OSc\HQior

~4
\

Fig. 2. Schematic diagram of experimental apparatus.
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Fig. 3. Phase lag between applied force and resulting displacement at the plate midpoint.

oscilloscope screen, and using the expression from Fig. 3

cP = arc sin (_Y_)
Ymax

(3.1)

the damping parameter was then calculated by means of eqn (2.22).
Also, the area enclosed by the Lissajous diagram was measured to determine experimentaUy

the energy loss per cycle and compared with the theoretical energy loss predicted by using eqn
(2.24). The above procedure was repeated for various vibration excitation frequencies.

Typical handbook property values were used for the steel and aluminum plates while the
following mechanical properties were determined experimentally for calculating the natural
frequency, damping and energy loss of the aluminum/graphite-fiber composite material:

Young's Modulus
(Along the fiber direction)

Young's Modulus
(Across the fiber direction)

Poison's Ratio
Poisson's Ratio
Rigidity Modulus
Volume of Graphite Fibers
Mass Density

£2 = 6.09 X 106 psi
Vl2 = 0.350
V21 = 0.159

0 12 = 5.7 X 106 psi
14%

p = 2.85 x 1O-4 1b sec2/in4
•

4. DISCUSSION AND CONCLUSION

Comparing the results of Refs. [8, 9] one can conclude that the determination of damping by
the use of the log decrement method (single degree of freedom system) is largely influenced by
the size of the beam, the support conditions, and the method used. Hence it is not always
feasible to use the log decrement technique to determine reliable values for the equivalent
viscous damping coefficient of a material. Since, for orthotropic or composite materials, such as
aluminum graphite, the mechanical properties vary considerably in mutually perpendicular
directions, the log decrement method utilizing a beam type element is not practical for damping
measurements since the beam size does not permit a true representation of the actual material.
Hence it is more appropriate to use a plate element (continuous system) to determine the damping
coefficient of composite materials since the true character of the material can be represented.

From Figs. 4 and 5 one can conclude that for small amplitudes of transverse vibration,
consistent with the bending analysis of plates, the phase angle and hence the damping parameter
is primarily dependent on frequency and only very slightly dependent on the vibration amplitude.

It is evident from Fig. 6 that the critical damping ratio for the steel and aluminum samples
varied somewhat with the ratio of the excitation frequency to the fundamental natural frequency.
The damping data for the steel and aluminum plates of various thicknesses appear to give very
consistent and uniform results. This tends to indicate that the critical damping ratio, and not the
damping coefficient, may be treated as a physical material property.

The aluminum graphite damping results as also shown in the same figure indicate that the
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Fig. 4. Phase angle between applied force and resulting center displacement for various excitation
frequencies at a constant vibration amplitude.
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Fig. 5. Phase angle between applied force and center displacement at constant forcing frequency.
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Fig. 6. Critical damping ratio variation with forcing frequency for various thickness steel. aluminum and
aluminum-graphite composite plates.

critical damping ratio is considerably smaller than for the steel or aluminum. This damping ratio
also decreases slightly with vibration frequency.

Figures 7 and 8 show the comparison between the theoretical and experimentally measured
(area of the Lissajous diagram) energy loss per cycle of loading. The theoretical values have
been calculated using the damping coefficients determined above by the continuous system
analysis.

Consistent with the critical damping ratio data the energy loss per cycle for the
aluminum-graphite plate sample was considerably less than for aluminum samples. This suggests
that it may be possible to utilize composite materials for specific design applications where
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Fig. 7. Comparison of theoretical and experimental energy loss due to damping in aluminum plates.
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Fig. 8. Comparison of theoretical and experimental energy loss due to damping in the aluminum-graphite
composite plate.

stiffness, strength and damping properties are desired. Present design considerations have been
limited to the utilization of composites for their structural strength and stiffness characteristics.
The results presented herein indicate that it is also possible to design a material for its dynamic
damping characteristics.

The above results appear satisfactory considering any experimental errors involved and the
theoretical approximations, and also show that the determination of damping coefficient using
continuous system method is more realistic than that obtained by the single degree of freedom
system (log decrement) analysis. By obtaining such data for different materials one can compare
their effective damping at a particular or a range of frequencies. Also, it can be concluded that the
viscous damping criteria can be effectively used for the analysis of composite materials which
include damping.
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